翻訳と辞書
Words near each other
・ Fractional ownership
・ Fractional ownership of aircraft
・ Fractional part
・ Fractional Poisson process
・ Fractional programming
・ Fractional quantum Hall effect
・ Fractional quantum mechanics
・ Fractional renting
・ Fractional rig
・ Fractional Schrödinger equation
・ Fractional sodium excretion
・ Fractional supersymmetry
・ Fractional vortices
・ Fractional wavelet transform
・ Fractional-order control
Fractional-order integrator
・ Fractional-order system
・ Fractional-reserve banking
・ Fractionalism
・ Fractionalization
・ Fractionated spacecraft
・ Fractionating column
・ Fractionation
・ Fractionation Research Inc.
・ Fractionism
・ FractMus
・ Fractofusus misrai
・ Fractography
・ Fractolatirus
・ Fractolatirus normalis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fractional-order integrator : ウィキペディア英語版
Fractional-order integrator

A fractional-order integrator or just simply fractional integrator is an integrator device that calculates the fractional-order integral or derivative (usually called a differintegral) of an input. Differentiation or integration is a real or complex parameter. The fractional integrator is useful in fractional-order control where the history of the system under control is important to the control system output.
== Overview ==
The differintegral function,
:{}_a \mathbb{D}^q_t \left( f(x) \right)
includes the integer order differentiation and integration functions, and allows a continuous range of functions around them. The differintegral parameters are ''a'', ''t'', and ''q''. The parameters ''a'' and ''t'' describe the range over which to compute the result. The differintegral parameter ''q'' may be any real number or complex number. If ''q'' is greater than zero, the differintegral computes a derivative. If ''q'' is less than zero, the differintegral computes an integral.
The integer order integration can be computed as a Riemann–Liouville differintegral, where the weight of each element in the sum is the constant unit value 1, which is equivalent to the Riemann sum. To compute an integer order derivative, the weights in the summation would be zero, with the exception of the most recent data points, where (in the case of the first unit derivative) the weight of the data point at ''t'' − 1 is −1 and the weight of the data point at ''t'' is 1. The sum of the points in the input function using these weights results in the difference of the most recent data points.
These weights are computed using ratios of the Gamma function incorporating the number of data points in the range (), and the parameter ''q''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fractional-order integrator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.